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Motivation

The exploration of global and local symmetries in the realm of convolutional neural network (CNN) architectures has emerged as an intriguing
area of research. In [1] suggest that symmetries may hold significant roles in the construction of CNN architectures, and that understanding the
associated conserved quantities can provide valuable insights into the dynamics of network evolution during training. In order to accomplish
this objective, the first requirement is an expansion of Noether’s theorem [2] that applies to nonlocal theories. Hence, this poster presents a novel
proof of the extension of Noether’s theorem to nonlocal Lagrangians characterized by an infinite number of degrees of freedom. By establishing
this extension, we unlock new possibilities for understanding complex systems governed by nonlocal operators, such as, the convolution one.
It relies on [3], and, up until now, this extension has demonstrated successful application across various scenarios. These include p-adic parti-
cles/strings [4, 5], different examples of non-local harmonic oscillators [5], and electrodynamics of dispersive media [6]. In each of these cases, it
has proven capable of replicating established results and, most importantly, has yielded novel results.

Extending Noether’s Theorem: A Proof for Nonlocal Lagrangians

Consider the infinitesimal transformations

x′a(x) = xa + δxa(x) and φ̃′A(x) = φ̃A(x) + δφ̃A(x) . (1)

The nonlocal Lagrangian density L(Txφ̃
A, x) transforms so that the action integral over any four-volume is preserved S′(V ′) = S(V), namely,

L′(Tx′φ̃′A, x′) = L(Txφ̃
A, x)

∣∣∣∣ ∂x∂x′
∣∣∣∣ , (2)

where Txφ̃A(y) = φ̃A(y + x). Therefore, if V ′ is the transformation of the spacetime volume V according to (1), we get∫
V ′

dxL′(Txφ̃′A, x)−
∫
V

dxL(Txφ̃
A, x) = 0 , (3)

where we have replaced the dummy variable x′ with x . Let us assume that the volumes V ′ and V share a large region and only differ in an
infinitesimal layer close to the boundary ∂V . If dΣa is the hypersurface element on the boundary, then the volume element close to the boundary
is dx = dΣb δx

b. Hence, by neglecting second-order infinitesimals, equation (3) becomes∫
V

dx
[
L′(Txφ̃′A, x)− L(Txφ̃

A, x)
]

+

∫
∂V
L(Txφ̃

A, x) δxb dΣb = 0 . (4)

For a Noether symmetry, we have that
L′(Txφ̃′A, x) = L(Txφ̃

′A, x) + ∂bW
b(Txφ̃

′A, x) , (5)

where W b(Txφ̃
′A, x) is a first-order infinitesimal; therefore,

L′(Txφ̃′A, x)− L(Txφ̃
A, x) = ∂bW

b(Txφ̃
A, x) +

∫
R4

dy λA(φ̃, x, y) δφ̃A(y) where λA(φ̃, x, y) =
δL(Txφ̃

A, x)

δφA(y)
, (6)

where ∂b is the partial derivative for xb, and second-order infinitesimals have been neglected. Introducing the variable z = y−x in (6), substituting
it in (4), and applying Gauss’ theorem, we obtain that∫

V
dx

{
∂b

[
L(Txφ̃

A, x) δxb + W b(Txφ̃
A, x)

]
+

∫
R4

dz λA(φ̃, x, z + x) δφ̃A(z + x)

}
= 0 . (7)

Furthermore, including the nonlocal Euler-Lagrange equations

ψA(φ̃, x) =

∫
R4

dy λA(φ̃, y, x) , (8)

we can write

−
∫
V

dxψA(φ̃, x) δφ̃A(x) =

∫
V

dx

{
∂b

[
L(Txφ̃

A, x) δxb + W b(Txφ̃
A, x)

]
+

∫
R4

dz
[
λA(φ̃, x, z + x) δφ̃A(z + x)− λA(φ̃, x− z, x) δφ̃A(x)

]}
. (9)

Now, the trick. We use the identity

λA(φ̃, x, z + x) δφ̃A(z + x)− λA(φ̃, x− z, x) δφ̃A(x) =

∫ 1

0
ds

d

ds

{
λA(φ̃, x + [s− 1]z, x + sz) δφ̃A(x + sz)

}
=

∫ 1

0
ds zb

∂

∂xb

{
λA(φ̃, x + [s− 1]z, x + sz) δφ̃A(x + sz)

}
(10)

that, combined with (9), leads to ∫
V

dx

{
ψA(φ̃, x) δφ̃A(x) +

∂

∂xb

[
L(Txφ̃, x) δxb + W b(Txφ̃, x) + Πb(Txφ̃, x)

]}
= 0 , (11)

where Πb(Txφ̃, x) is

Πb(Txφ̃, x) :=

∫
R4

dz zb
∫ 1

0
ds λA(φ̃, x + [s− 1]z, x + sz) δφ̃A(x + sz) . (12)

As equation (11) holds for any spacetime volume V , it follows that

N(φ̃, x) := ∂bJ
b(Txφ̃, x) + ψA(φ̃, x) δφ̃A(x) ≡ 0 , (13)

where

Jb(Txφ̃, x) : = L(Txφ̃, x) δxb + W b(Txφ̃, x) +

∫
R4

dz zb
∫ 1

0
ds λA(φ̃, x + [s− 1]z, x + sz) δφ̃A(x + sz) . (14)

Equation (13) is an identity and holds for any kinematic field φ̃. For dynamic fields, this identity implies that the current Jb(Txφ̃, x) is locally
conserved

∂bJ
b = 0 . (15)

The angular momentum and energy-momentum currents

Let us particularise the conserved current (14) for a Poincaré symmetry. By substituting δxa = εa + ωabx
b and ωab + ωba = 0, where εa and ωab

are constants, ωab = ηacω
c
b and ηac = diag(1, 1, 1,−1) is the Minkowski matrix to raise and lower indices into (14) and assuming that the nonlocal

Lagrangian density is Poincaré invariant — therefore, W b = 0—, we find that the conserved current can be written as

Jb(Txφ̃, x) = −εa T b
a (Txφ̃, x)− 1

2
ωacJ b

ac (Txφ̃, x) , (16)

where

T b
a := −L(Txφ̃, x) δba +

∫
R4

dz zb
∫ 1

0
ds λA(φ̃, x + [s− 1]z, x + sz) φ̃A|a(x + sz) , (17)

and J b
ac := 2x[cT b

a]
+ S b

ac with

S b
ac (Txφ̃, x) := 2

∫
R4

dz zb
∫ 1

0
ds λA(φ̃, x + [s− 1]z, x + sz)

[
s z[cφ̃

A
|a](x + sz)−MA

B[ac]φ̃
B(x + sz)

]
(18)

are the canonical energy-momentum tensor, the angular momentum tensor, the orbital angular momentum tensor, and the spin current, respec-
tively. Since the ten parameters εa and ωac are independent, the local conservation of the current Jb(Txφ̃, x) implies that the currents T b

a (Txφ̃, x)

and J b
ac (Txφ̃, x) are separately conserved, that is,

∂bT b
a (Txφ̃, x) = 0 and ∂bJ b

ac (Txφ̃, x) = 0 , or ∂bT b
a = 0 and ∂bS b

ac + 2 T[ac] = 0 . (19)

References
[1] J. E. Gerken, J. Aronsson, O. Carlsson, H. Linander, F. Ohlsson, C. Petersson, and D. Persson, “Geometric deep learning and equivariant neural networks,” arXiv: 2105.13926 [cs.LG] (2021) .

[2] E. Noether, “Invariante variationsprobleme,” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918 (1918) 235–257.

[3] C. Heredia, “Nonlocal Lagrangian formalism,” arXiv: 2304.10562 [hep-th] (2023) .

[4] C. Heredia and J. Llosa, “Nonlocal Lagrangian fields: Noether’s theorem and Hamiltonian formalism,” Physical Review D 105 no. 12, (Jun, 2022) .

[5] C. Heredia and J. Llosa, “Non-local Lagrangian mechanics: Noether’s theorem and Hamiltonian formalism,” Journal of Physics A: Mathematical and Theoretical 54 no. 42, (Sep, 2021) 425202.

[6] C. Heredia and J. Llosa, “Energy-momentum tensor for the electromagnetic field in a dispersive medium,” Journal of Physics Communications 5 no. 5, (May, 2021) 055003.

Acknowledgements

Funding for this work was partially provided by the Spanish MCIN (project ref. PID2021-123879OB-C22).


