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1 Elastic collisions

The atomic mass of a given isotope, AZ, is estimated by means of the mass formula (Royer
and Gautier, 2006)

M(AZ)c2 = Zmpc
2 +Nmnc

2 −Bnuc + Zmec
2 −Be, (1)

where
mp = 1836.15 me and mn = 1838.68 me (2)

are the masses of the proton and the neutron, respectively, Bnuc is the binding energy of
the nucleus and Be is the binding energy of the Z atomic electrons. These binding energies
are approximated by the following empirical expressions, which were determined from fits
to available calculated or measured data,

Be = (14.4381 eV)Z2.39 + (1.55468× 10−6 eV)Z5.35, (3)

and

Bnuc = (15.7335× 106 eV)
(
1− 1.6949 I2

)
A− (17.8048× 106 eV)

(
1− 1.0884 I2

)
A2/3

− 3

5

Z2e2

R0

+ Epair, (4)

where I = (N − Z)/A is the charge asymmetry parameter, R0 = 1.2181A1/3 fm, and

Epair =


−(11× 106 eV)A−1/2 for nuclei with odd Z and odd N ,

0 for nuclei with odd A,

(11× 106 eV)A−1/2 for nuclei with even Z and even N .

(5)
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As indicated in the parent article, the formula (1) approximates the experimental atomic
masses of naturally occurring isotopes (Coursey et al., 2015) with a relative accuracy better
than about 10−4, which is sufficient for the present purposes.

1.1 Nuclear optical-model potentials

The interaction energy of the projectile with a bare nucleus of the isotope AZ having atomic
number Z and mass number A is described by a phenomenological complex optical-model
potential

Vnuc(r) = Vopt(r) + iWopt(r). (6)

The term Vopt(r) is a real potential that reduces to the Coulomb potential at large radii,
and iWnuc(r) is an absorptive (negative) imaginary potential which should account for the
loss of projectiles from the elastic channel caused by inelastic processes. Parameterizations
of optical-model potentials have been proposed by various authors (see, e.g. Watson et al.,
1969; Hodgson, 1971; Koning and Delaroche, 2003; Su and Han, 2015). They are generally
expressed as a combination of Woods–Saxon volume terms,

f(R, a; r) =
1

1 + exp[(r −R)/a]
, (7a)

and surface derivative (d) terms,

g(R, a; r) =
d

dr
f(R, a; r)

=
1

a
f(R, a; r) [f(R, a; r)− 1] . (7b)

The parameters in these functions are the radius R and the diffuseness a; typically, the
radius is expressed as R = r0A

1/3. We consider global model potentials of the type

Vnuc(r) = Vv(E; r) + Vd(E; r) + VC(r) + Vso(E; r) 2L·S

+ i
[
Wv(E; r) +Wd(E; r) +Wso(E; r) 2L·S

]
(8)

with the following terms:

1) Real volume potential:

Vv(E; r) = Vv(E) f(Rv, av; r). (9a)

2) Real surface potential:

Vd(E; r) = Vd(E) 4ad g(Rd, ad; r). (9b)

3) Coulomb potential: approximated by the electrostatic potential of a uniformly charged
sphere of radius Rc,

Vc(r) =
Z1Ze

2

r


r

2Rc

(
3− r2

R2
c

)
if r < Rc,

1 if r ≥ Rc.

(9c)
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4) Imaginary volume potential:

Wv(E; r) = Wv(E) f(Rw, aw; r). (9d)

5) Imaginary surface potential:

Wd(E; r) = Wd(E) 4awd g(Rwd, awd; r). (9e)

6) Real spin-orbit potential:

Vso(E; r) = Vso(E)

(
ℏ

mπc

)2
1

r
g(Rso, aso; r), (9f)

where the quantity in parentheses is the pion Compton wavelength, ℏ/(mπc) ≃ 1.429 502
fm, which is used by convention. For light nuclei, it has been suggested (Watson et al.,
1969) that the real spin-orbit term should be multiplied by r to prevent its divergence at
r = 0.
7) Imaginary spin-orbit potential:

Wso(E; r) = Wso(E)

(
ℏ

mπc

)2
1

r
g(Rwso, awso; r). (9g)

The operators L and S are, respectively, the orbital and spin angular momenta (both in
units of ℏ) of the projectile. It is worth mentioning that optical model potentials are also
used for projectile neutrons, in which case the Coulomb potential vanishes. The spin-orbit
terms are null for alpha particles. We have indicated explicitly that the strengths of the
potential terms are functions (usually expressed as polynomials) of the kinetic energy E
of the projectile in the L frame.

In the calculations for protons (and neutrons) we use the parameterization of the nuclear
global optical-model potential given by Koning and Delaroche (2003), which is valid for
projectiles with kinetic energies E between 1 keV and about 200 MeV and nuclei with
24 ≤ A ≤ 209. Owing to the lack of more accurate approximations, because the potential
values vary smoothly with A, Z and E, we use those parameters for all isotopes (except
for collisions of protons with isotopes having A ≤ 6, which are described by means of
empirical formulas, see the parent article) and for projectiles with kinetic energies up to
300 MeV, for higher energies the potential parameters at E = 300 MeV are employed. For
nucleons colliding with target isotopes having A < 24 (Z < 12), we use the optical-model
potential of Watson et al. (1969) which is applicable to energies from 10 MeV to 50 MeV;
for projectiles with energies higher than 35 MeV the potential of Koning and Delaroche
is employed. For alpha particles, the adopted parameterization of the nuclear potential is
the one proposed by Su and Han (2015), which is valid for nuclides with 20 ≤ A ≤ 209 and
projectiles with kinetic energies up to 386 MeV, although we use it for any target atom.
For alphas with higher energies, we use the parameter values at E = 386 MeV.

The Fortran program panel calculates the DCS for elastic collisions of nucleons and
alpha particles with nuclei by using the partial-wave expansion method in the CM frame,
as described in the parent article. The effect of screening of the nuclear charge by atomic
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electrons is introduced as a correction factor, which is determined from the DCS obtained
from the eikonal approximation (assuming a point nucleus and the analytical approxima-
tion to the DHFS self-consistent atomic potential). The program panel has been run to
produce a complete database of DCSs for elastic collisions of protons, neutrons, and alphas
with the elements hydrogen (Z = 1) to einsteinium (Z = 99), which covers the interval
of projectile kinetic energies from 100 keV to 1 GeV. The database files, as well as the
program panel, are available from the authors under request. The random sampling of
the DCS in the CM frame is performed by means of the RITA (rational inverse transform
with aliasing) algorithm (Garćıa-Toraño et al., 2019) as described by Salvat (2019). This
sampling scheme allows restricting the sampling to deflections larger than a given cutoff
µc.

1.2 Derivation of Eq. (a.58)

Our description of elastic collisions is based on the DCS in the CM frame, dσel/dΩ, Eq.
(a.10), which is a function of the scattering angle θ. In the simulations we need to consider
the DCS in the L frame, where the polar scattering angle of the projectile is θ1. The
scattering angles in the two frames are related by Eq. (a.56),

cos θ =
−τγ2

CM sin2 θ1 ± cos θ1
√

cos2 θ1 + γ2
CM(1− τ 2) sin2 θ1

γ2
CM sin2 θ1 + cos2 θ1

. (10)

The DCS in the L frame is
dσel

dΩ1

=

∣∣∣∣ d(cos θ)d(cos θ1)

∣∣∣∣ dσel

dΩ
. (11)

To calculate the derivative of cos θ, we simplify the notation by setting x = cos θ1 and
y = cos θ, and writing

y =
−τγ2

CM(1− x2)± x
√
x2 + γ2

CM(1− τ 2)(1− x2)

γ2
CM(1− x2) + x2

.

Then

dy

dx
=

2τγ2
CMx±

√
x2 + γ2

CM(1− τ 2)(1− x2)± x
1

2

2x− 2γ2
CM(1− τ 2)x√

x2 + γ2
CM(1− τ 2)(1− x2)

γ2
CM(1− x2) + x2

−
−τγ2

CM(1− x2)± x
√

x2 + γ2
CM(1− τ 2)(1− x2)

[γ2
CM(1− x2) + x2]

2

[
−2γ2

CMx+ 2x
]

=

2τγ2
CMx±

√
x2 + γ2

CM(1− τ 2)(1− x2)± x
x− γ2

CM(1− τ 2)x√
x2 + γ2

CM(1− τ 2)(1− x2)

γ2
CM(1− x2) + x2

+
−τγ2

CM(1− x2)± x
√

x2 + γ2
CM(1− τ 2)(1− x2)

[γ2
CM(1− x2) + x2]

2 2x
(
γ2
CM − 1

)
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Let us define

S =
√

x2 + γ2
CM(1− τ 2)(1− x2)

and write

dy

dx
=

1

[γ2
CM(1− x2) + x2]

2
S

×
{(

2τγ2
CMxS ± S2 ± x2

[
1− γ2

CM(1− τ 2)
]) [

γ2
CM(1− x2) + x2

]
+

(
−τγ2

CM(1− x2)S ± xS2
)
2x

(
γ2
CM − 1

)}
.

The quantity in curly braces,

{· · · } = ±x2
[
1− γ2

CM(1− τ 2)
] [
γ2
CM(1− x2) + x2

]
+ S 2τx

{
γ2
CM

[
γ2
CM(1− x2) + x2

]
− γ2

CM(1− x2)
(
γ2
CM − 1

)}
± S2

{[
γ2
CM(1− x2) + x2

]
+ 2x2

(
γ2
CM − 1

)}
,

can be largely simplified as follows (notice that we add and subtract various quantities to
isolate the final result and to leave a residual sum of terms that add to zero)

{· · · } = ±γ2
CMτ

2x2 + γ2
CM2τxS ± γ2

CMS
2

±
{[

x2 − γ2
CM(1− τ 2)x2

] [
γ2
CM(1− x2) + x2

]
− γ2

CMτ
2x2

+ S2
[
γ2
CM(1− x2) + x2 + 2x2

(
γ2
CM − 1

)
− γ2

CM

]}
= ±γ2

CM [τx± S]2

±
{[

x2 − γ2
CM(1− τ 2)x2

] [
γ2
CM(1− x2) + x2

]
− γ2

CMτ
2x2

+
[
x2 + γ2

CM(1− τ 2)(1− x2)
] [
−γ2

CMx
2 + x2 + 2x2

(
γ2
CM − 1

)]}
= ±γ2

CM [τx± S]2

±
{[

x2 − γ2
CM(1− τ 2)x2

] [
γ2
CM(1− x2) + x2

]
− γ2

CMτ
2x2

+
[
x2 + γ2

CM(1− τ 2)(1− x2)
]
x2

(
γ2
CM − 1

)}
= ±γ2

CM [τx± S]2

±
{
γ2
CM(1− x2)x2 + x4 − γ2

CM(1− τ 2)x2
[
γ2
CM(1− x2) + x2

]
− γ2

CMτ
2x2

+
[
x2 + γ2

CM(1− τ 2)(1− x2)
] (

γ2
CMx

2 − x2
)}

= ±γ2
CM [τx± S]2

±
{
γ2
CM(1− x2)x2 + x4 − γ4

CM(1− τ 2)x2(1− x2)− γ2
CM(1− τ 2)x4 − γ2

CMτ
2x2

+ γ2
CMx

4 − x4 + γ4
CM(1− τ 2)(1− x2)x2 − γ2

CM(1− τ 2)(1− x2)x2
}

= ±γ2
CM [τx± S]2
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±
{
γ2
CMx

2 − γ2
CM(1− τ 2)x4 − γ2

CMτ
2x2 − γ2

CM(1− τ 2)(1− x2)x2
}

= ±γ2
CM [τx± S]2 ±

{
γ2
CMx

2 − γ2
CMτ

2x2 − γ2
CM(1− τ 2)x2

}
= ±γ2

CM [τx± S]2 .

Hence
dy

dx
=

±γ2
CM [τx± S]2

[γ2
CM(1− x2) + x2]

2
S
,

or, equivalently,.

d(cos θ)

d(cos θ1)
=

±γ2
CM

[
τ cos θ1 ±

√
cos2 θ1 + γ2

CM(1− τ 2) sin2 θ1

]2
(
γ2
CM sin2 θ1 + cos2 θ1

)2√
cos2 θ1 + γ2

CM(1− τ 2) sin2 θ1
. (12)

Inserting this result into Eq. (11), the DCS in L is expressed as

dσel

dΩ1

=
γ2
CM

[
τ cos θ1 ±

√
cos2 θ1 + γ2

CM(1− τ 2) sin2 θ1

]2
(
γ2
CM sin2 θ1 + cos2 θ1

)2√
cos2 θ1 + γ2

CM(1− τ 2) sin2 θ1

dσel

dΩ
. (a.58)

2 Inelastic collisions

The DDCS for inelastic collisions with the k-th oscillator is split in the form given by Eq.
(a.93),

d2σk

dQ dW
=

d2σc
k

dQ dW
+

d2σdl
k

dQ dW
+

d2σdt
k

dQ dW
, (a.93)

where the terms on the right-hand side account for contributions from close collisions and
from distant (resonant) longitudinal and transverse interactions, respectively,

d2σc
k

dQ dW
= B 1

W 2

(
1− β2 W

Wridge

)
[1− g(Q)] δ(W −Q)Θ(Wridge −W ) , (a.94)

d2σdl
k

dQ dW
= B 1

W

2mec
2

Q(Q+ 2mec2)
g(Q) δ(W −Wk)Θ(Qc −Q), (a.95)

and

d2σdt
k

dQ dW
= B 1

W

{
ln

(
1

1− β2

)
− β2 − δF

}
δ(W −Wk) δ(Q−Q−)Θ(Qc −Q). (a.98)

The quantity δF is the density-effect correction to the stopping power, Eq (a.99).

The energy-loss DCS for collisions with the k-th oscillator,

dσk

dW
=

∫ Q+

Q−

d2σk

dQ dW
dQ , (13)
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splits into the corresponding contributions,

dσk

dW
=

dσc
k

dW
+

dσdl
k

dW
+

dσdt
k

dW
, (14)

where

dσc
k

dW
= B 1

W 2

(
1− β2 W

Wridge

+
1− β2

2M2
1 c

4
W 2

)
[1− g(W )] Θ(Wridge −W ), (15)

dσdl
k

dW
= B 1

W

(∫ Qc

Q−

2mec
2

Q(Q+ 2mec2)
g(Q) dQ

)
δ(W −Wk)Θ(Qc −Q−), (16)

and
dσdt

k

dW
= B 1

W

[
ln

(
1

1− β2

)
− β2 − δF

]
δ(W −Wk)Θ(Qc −Q−). (17)

Let us evaluate the quantity

G ≡
∫ Qc

Q−

2mec
2

Q(Q+ 2mec2)
g(Q) dQ

=

∫ Qc

Q−

2mec
2

Q(Q+ 2mec2)
dQ−

∫ Qc

max(Q−,Uk)

2mec
2

Q(Q+ 2mec2)

Q2 − U2
k

b2W 2
k

dQ

=

[
ln

(
Q

Q+ 2mec2

)]Qc

Q−

− 2mec
2

b2W 2
k

[
Q− 2mec

2 ln(Q+ 2mec
2)− U2

k

2mec2
ln

(
Q

Q+ 2mec2

)]Qc

max(Q−,Uk)

= ln

(
Qc

Q−

Q− + 2mec
2

Qc + 2mec2

)
− 2mec

2

b2W 2
k

[
Qc −Q1 − 2mec

2 ln

(
Qc + 2mec

2

Q1 + 2mec2

)]
+

U2
k

b2W 2
k

ln

(
Qc

Q1

Q1 + 2mec
2

Qc + 2mec2

)
(18)

with Q1 = max(Q−, Uk).

The energy-loss DCS for close collisions with W > Qc is

dσch
k

dW
= B 1

W 2

(
1− β2 W

Wridge

+
1− β2

2M2
1 c

4
W 2

)
Θ(Wridge −Qc), (19)

and for Uk ≤ W ≤ Qc,

dσcl
k

dW
≃ B

b2W 2
k

(
1− β2 W

Wridge

)
W 2 − U2

k

W 2
Θ(Wridge − Uk)Θ(Qc −Wridge)

=
B

b2W 2
k

(
1− β2

Wridge

W − U2
k

W 2
+

β2U2
k

WridgeW

)
Θ(Wridge − Uk)Θ(Qc −Wridge), (20)
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where we have used that Qc ≪ M1c
2. Notice that in the case of the conduction band

(Ucb = 0) all the terms proportional to U2
k have to be removed.

The integrated one-electron cross sections,

σ
(n)
k ≡

∫
W n dσk

dW
dW = [σc

k]
(n) +

[
σdl
k

](n)
+
[
σdt
k

](n)
, (21)

can be evaluated analytically. The partial contributions from close collisions are

[σc
k]

(0) =
B

b2W 2
k

[
W − β2

Wridge

1

2
W 2 + U2

k

1

W
+

β2U2
k

Wridge

lnW

]min(Qc,Wridge)

Uk

Θ(Wridge − Uk)

+B
[
− 1

W
− β2

Wridge

lnW +
1− β2

2M2
1 c

4
W

]Wridge

Qc

Θ(Wridge −Qc), (22)

[σc
k]

(1) =
B

b2W 2
k

[
1

2
W 2 − β2

Wridge

1

3
W 3 − U2

k lnW +
β2U2

k

Wridge

W

]min(Qc,Wridge)

Uk

Θ(Wridge − Uk)

+B
[
lnW − β2

Wridge

W +
1− β2

2M2
1 c

4

1

2
W 2

]Wridge

Qc

Θ(Wridge −Qc), (23)

and

[σc
k]

(2) =
B

b2W 2
k

[
1

3
W 3 − β2

Wridge

1

4
W 4 − U2

k W +
β2U2

k

Wridge

1

2
W 2

]min(Qc,Wridge)

Uk

Θ(Wridge − Uk)

+B
[
W − β2

Wridge

1

2
W 2 +

1− β2

2M2
1 c

4

1

3
W 3

]Wridge

Qc

Θ(Wridge −Qc). (24)

The contributions from distant interactions are[
σdl
k

](0)
=

B
Wk

GΘ[Qc −Q−(Wk)]

=
B
Wk

[
ln

(
Qc

Q−

Q− + 2mec
2

Qc + 2mec2

)
− 2mec

2

b2W 2
k

{
Qc −Q1 − 2mec

2 ln

(
Qc + 2mec

2

Q1 + 2mec2

)
− U2

k

2mec2
ln

(
Qc

Q1

Q1 + 2mec
2

Qc + 2mec2

)}]
Θ[Qc −Q−(Wk)], (25)

[
σdt
k

](0)
=

B
Wk

[
ln

(
1

1− β2

)
− β2 − δF

]
Θ[Qc −Q−(Wk)], (26)

and [
σdl
k

](1)
= Wk

[
σdl
k

](0)
,

[
σdl
k

](2)
= W 2

k

[
σdl
k

](0)
,[

σdt
k

](1)
= Wk

[
σdt
k

](0)
,

[
σdt
k

](2)
= W 2

k

[
σdt
k

](0)
. (27)
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2.1 Integrated angular cross sections

Inelastic collisions cause small deflections of the projectile and contribute to the directional
spreading of particle beams when they penetrate matter. For simulation purposes, it is
convenient to describe angular deflections by means of the variable

µ ≡ sin2(θ/2) =
1− cos θ

2
(a.39)

instead of the polar scattering angle θ. The recoil energy Q can then be expressed as

Q(Q+ 2mec
2) = (cp)2 + (cp′)2 − 2 cp cp′ (1− 2µ)

= (cp− cp′)2 + 4 cp cp′ µ.

It follows that

µ(Q,W ) =
Q(Q+ 2mec

2)− (cp− cp′)2

4 cp cp′
. (28)

In distant interactions with the k-th oscillator, W = Wk and the magnitude p′k of the linear
momentum of the projectile after the collision,

(cp′k)
2 = (E −Wk)(E −Wk + 2mec

2), (29)

is fixed, which implies that µ is a function of Q only. In close collisions Q = W and

µ(W,W ) =
W (W + 2mec

2)−
(
cp−

√
(E −W )(E −W + 2M1c2)

)2

4 cp
√

(E −W )(E −W + 2M1c2)
. (30)

The total angular cross section, the first transport cross section, and the second trans-
port cross section for inelastic collisions with the k-th oscillator are defined, respectively,
as

[σang
k ](0) =

∫
dσin

dµ
dµ , (31)

[σang
k ](1) =

∫
2µ

dσin

dµ
dµ , (32)

and

[σang
k ](2) =

∫
6(µ− µ2)

dσ
(s)
in

dµ
dµ , (33)

where dσin/dµ is the DCS, differential in the deflection µ. Naturally, both the differential
and the integrated angular cross sections per molecule are the sums of contributions from
the various oscillators,

[σang](n) =
[
σ
(ang)
cb

](n)
+
∑
k

fk

[
σ
(ang)
k

](n)
. (34)

The contribution of close collisions with the k-th oscillator to the integrated angular
cross sections can be calculated in terms of the energy-loss DCS, while that of distant
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longitudinal interactions is conveniently calculated in terms of the DCS differential in the
recoil energy,

dσdl
k

dQ
=

∫
d2σdl

k

dQ dW
dW = B 1

Wk

2mec
2

Q(Q+ 2mec2)
g(Q)Θ(Qc −Q)Θ[Q−Q−(Wk)] . (35)

We have [
σ
(ang)
k

](0)
=

[
σdt
k

](0)
+

∫ Qc

Q−(Wk)

dσdl
k

dQ
dQ+

∫ Wridge

Uk

dσc
k

dW
dW = σ

(0)
k , (36a)

[
σ
(ang)
k

](1)
= 2

∫ Qc

Q−(Wk)

µ(Q,Wk)
dσdl

k

dQ
dQ+ 2

∫ Wridge

Uk

µ(W,W )
dσc

k

dW
dW , (36b)

and [
σ
(ang)
k

](2)
= 6

∫ Qc

Q−(Wk)

[
µ(Q,Wk)− µ2(Q,Wk)

] dσdl
k

dQ
dQ

+ 6

∫ Wridge

Uk

[
µ(W,W )− µ2(W,W )

] dσc
k

dW
dW . (36c)

Since in distant transverse interactions the projectile is not deflected, those interactions
do not contribute to the transport cross sections. The integrals in Eqs. (36) are required
only for class-II simulations, where they are restricted to outer-shell oscillators and to
energy transfer less than a certain cutoff value Wcc. In our simulation code the restricted
angular integrals are evaluated numerically by building a table of the integrand, which is
subsequently integrated by using linear log-log interpolation.

2.2 Simulation of inelastic collisions

Individual inelastic collisions with the k-th oscillator are simulated from the DDCS given
by Eqs. (a.93-95) and (a98) using the exact algorithm described below. A presentation
of elementary sampling methods is given in the penelope manual (Salvat, 2019). Notice
that the probability distribution functions (pdf’s) considered here are not normalized;
normalization is automatically satisfied when each call to a sampling routine delivers one
value of the relevant random variable.

• Distant interactions

Distant interactions have a resonant character with a fixed energy loss W = Wk or W
′
k, Eq.

(a.116). In distant transverse interactions, Q = Q− so that cos θ = 1, i.e., the projectile is
not deflected. Distant longitudinal interactions involve a continuum of recoil energies with
the pdf

p(Q) =
2mec

2

Q(Q+ 2mec2)
g(Q), if Q− < Q < Qc , (37)

where

g(Q) = 1− Q2 − U2
k

b2W 2
k

Θ(Q− Uk). (38)
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Random values of Q from this distribution are sampled by means of the following rejection
algorithm.

1) Tentative values of Q are generated from the pdf

p1(Q) =
2mec

2

Q(Q+ 2mec2)
(39)

by using the inverse transform method, which gives the sampling formula

Q = Q− 2mec
2

[(
Q−

Qc

Qc + 2mec
2

Q− + 2mec2

)ξ

(Q− + 2mec
2)−Q−

]−1

, (40)

where ξ is a random number uniformly distributed in the interval (0,1).

2) These values are subject to a rejection process; they are accepted with probability

R1(Q) =
g(Q)

g(Uk)
=

{
1 if Q < Uk,

1− (Q2 − U2
k )/(bWk)

2 if Q ≥ Uk.
(41)

That is, theQ value is accepted if a new random number ξ satisfies the condition ξ < R1(Q);
otherwise the value is rejected and we repeat the sampling from p1(Q).

Once the recoil energy Q has been determined, the polar scattering angle θ of the
projectile is obtained as

cos θ =
E(E + 2M1c

2) + (E −Wk)(E −Wk + 2M1c
2)−Q(Q+ 2mec

2)

2
√

E(E + 2M1c2) (E −Wk)(E −Wk + 2M1c2)
. (42)

The interaction causes the release of a secondary electron with kinetic energy Es = Wk−Uk

in the direction of the momentum transfer, defined by the polar angle θr given by

cos θr =
Wk/β√

Q(Q+ 2mec2)

(
1 +

Q(Q+ 2mec
2)−W 2

k

2Wk(E +M1c2)

)
. (43)

As indicated in the parent article, in the case of distant excitations of an inner subshell,
the energy loss W is sampled from the triangular pdf, Eq. (a.115), which serves to spread
the discrete resonances predicted by our GOS model into a continuum distribution keeping
their average value ⟨W ⟩ = W ′

k.

• Close collisions

In close interactions Q = W , and the energy loss W is sampled from the pdf determined
by the corresponding energy-loss DCS.

The pdf for low-W collisions is

p(W ) =

(
1− β2 W

Wridge

)
W 2 − U2

k

W 2
if Uk < W < Qc . (44)

The sampling from this distribution is performed by means of the following rejection algo-
rithm.
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1) Tentative values of W are generated from the distribution

p2(W ) = 1− U2
k

W 2
(45)

by the inverse transform method, which gives the sampling formula

W = A+
√

A2 − U2
k with A =

ξ

2

(
Qc +

U2
k

Qc

)
+ (1− ξ)Uk . (46)

2) The generated W values are accepted with probability

R2(W ) =
1− β2W/Wridge

1− β2 Uk/Wridge

. (47)

The pdf of the energy loss in high-W close collisions is

p(W ) =
1

W 2

(
1− β2 W

Wridge

+
1− β2

2M2
1 c

4
W 2

)
if Qc < W < Wridge . (48)

Again, the sampling from this pdf may be performed by the rejection method:

1) Sample trial values of W from the distribution

p3(W ) =
1

W 2
(49)

by the inverse-transform formula

W =
Wridge Qc

Wridge − ξ(Wridge −Qc)
. (50)

2) Accept these values with probability

R3(W ) =

[
1− β2 W

Wridge

+
1− β2

2M2
1 c

4
W 2

] [
1− β2 Qc

Wridge

+
1− β2

2M2
1 c

4
Q2

c

]−1

. (51)

Recalling that Q = W in close collisions, the polar scattering angle θ of the projectile
and the emission angle θr of the secondary electron can be expressed as

cos θ =
E(E + 2M1c

2)−W (E +M1c
2 +mec

2)√
E(E + 2M1c2) (E −W )(E −W + 2M1c2)

(52)

and

cos θr =

√
W

β2(W + 2mec2)

(
1 +

mec
2

(E +M1c2)

)
, (53)

respectively.
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